Iron-mediated free radical injury in ethanol-exposed mouse neural crest cells.

نویسندگان

  • S Y Chen
  • K K Sulik
چکیده

Previous studies using cell and whole embryo cultures have shown that free radicals play an important role in the ethanol-induced death of mouse neural crest cells (NCCs; a significant cell type with respect to the genesis of alcohol-related birth defects). This investigation was spurred by reports of increased iron in ethanol-exposed fetuses and the knowledge that iron can initiate the production of reactive oxygen species. Initially, the ameliorative potential of two iron chelators, deferoxamine and phenanthroline, relative to ethanol-induced cell death was examined. Cotreatment of cultured NCCs with 100 mM ethanol and either 1 or 10 microM deferoxamine or 10, 50, or 250 microM phenanthroline significantly increased the percentage of viable cells as compared with exposure to 100 mM ethanol alone. These data indicate that iron is involved in the ethanol-induced cytotoxicity. To support this premise, the direct toxicity of iron to NCCs was also examined. As expected, loading the cells with Fe(II)/Fe(III) using 8-hydroxyquinoline as a carrier had an adverse effect on their viability as did treatment with a neurotoxin, 6-hydroxydopamine, that releases iron from ferritin storage. Cotreatment with an antioxidant, N-acetylcysteine, significantly diminished the toxicity of ethanol alone, that resulting from iron loading, as well as from the combination of ethanol exposure and iron loading. These results confirm the role of free radical-mediated damage in ethanol-induced cytotoxicity and highlight the potential role of iron relative to the genesis of alcohol-related birth defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alcohol-induced cell death in the embryo.

Exposure to alcohol during gestation can have profound consequences, but not all cells within the embryo are affected equally. Recent advances in molecular embryology have allowed an exploration of this variation. Much of this research has focused on the embryo's vulnerability to the facial malformations characteristic of fetal alcohol syndrome. Studies using mice and chicks show that alcohol e...

متن کامل

Transferrin: a potential source of iron for oxygen free radical-mediated endothelial cell injury.

The ability of transferrin to potentiate oxygen free radical-mediated endothelial cell injury was assessed. 51Cr-labeled endothelial cells derived from rat pulmonary arteries (RPAECs) were incubated with hydrogen peroxide (H2O2) in the presence and absence of holosaturated human transferrin, and the effect of transferrin on H2O2-mediated endothelial cell toxicity was determined. Addition of hol...

متن کامل

Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism

We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. ...

متن کامل

Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture

Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2000